If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-31-3k=-6-3k^2-2k
We move all terms to the left:
k^2-31-3k-(-6-3k^2-2k)=0
We get rid of parentheses
k^2+3k^2+2k-3k+6-31=0
We add all the numbers together, and all the variables
4k^2-1k-25=0
a = 4; b = -1; c = -25;
Δ = b2-4ac
Δ = -12-4·4·(-25)
Δ = 401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{401}}{2*4}=\frac{1-\sqrt{401}}{8} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{401}}{2*4}=\frac{1+\sqrt{401}}{8} $
| 17c=714 | | -67=24-7u | | X^3-2x^2+13x+10=0 | | q-5=36 | | -5(v-90)=-5 | | v+11/5=4 | | 0=6x^2-24x | | j/8-71=80 | | 12-x+6x=37 | | 0=6x^2+24x | | c/9+29=37 | | 8x-5x-51=85-4x | | -0.13=n-1.86 | | q+16/7=15 | | (x+2)/12=7/6+((x-9)/4) | | 6(d+12)=-60 | | (x+2)/12=7/6+(x-9/4) | | n−11.99=5.61 | | 13u=48+5u | | 7-v=-6(7v-8) | | x+2/12=7/6+(x-9/4) | | -36=9(c+45) | | 315=w+947 | | 10.5b=21+4b | | 4+7n=60 | | 15-4x=-6-x | | -2w=-148 | | 8=5-3c | | 16a+5a+2a-1=41-a | | 10=p/4+7 | | k-299=563 | | -6=-4+2h |